Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole

نویسندگان

  • Amos Ori
  • Kip S. Thorne
چکیده

There are three regimes of gravitational-radiation-reaction-induced inspiral for a compact body with mass m , in a circular, equatorial orbit around a Kerr black hole with mass M@m: ~i! the adiabatic inspiral regime, in which the body gradually descends through a sequence of circular, geodesic orbits; ~ii! a transition regime, near the innermost stable circular orbit ~isco!; ~iii! the plunge regime, in which the body travels on a geodesic from slightly below the isco into the hole’s horizon. This paper gives an analytic treatment of the transition regime and shows that, with some luck, gravitational waves from the transition might be measurable by the space-based LISA mission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition from inspiral to plunge in binary black hole coalescences

Combining recent techniques giving non-perturbative re-summed estimates of the damping and conservative parts of the two-body dynamics, we describe the transition between the adiabatic phase and the plunge, in coalescing binary black holes with comparable masses moving on quasi-circular orbits. We give initial dynamical data for numerical relativity investigations, with a fraction of an orbit l...

متن کامل

Transition from inspiral to plunge in precessing binaries of spinning black holes

We investigate the non-adiabatic dynamics of spinning black hole binaries by using an analytical Hamiltonian completed with a radiation-reaction force, containing spin couplings, which matches the known rates of energy and angular momentum losses on quasi-circular orbits. We consider both a straightforward post-Newtonian-expanded Hamiltonian (including spin-dependent terms), and a version of th...

متن کامل

Gravitational waves from a spinning particle in circular orbits around a rotating black hole.

Using the Teukolsky and Sasaki-Nakamura formalisms for the perterbations around a Kerr black hole, we calculate the energy flux of gravitational waves induced by a spinning particle of mass μ and spin S moving in circular orbits near the equatorial plain of a rotating black hole of mass M( μ) and spin Ma. The calculations are performed by using the recently developed post-Newtonian expansion te...

متن کامل

Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA

Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit ~isco!—more particularly, on orbits for which the angular velocity V is 0.03&V/V isco<1...

متن کامل

Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction

We study eccentric equatorial orbits of a test-body around a Kerr black hole under the influence of gravitational radiation reaction. We have adopted a well established two-step approach: assuming that the particle is moving along a geodesic ~justifiable as long as the orbital evolution is adiabatic! we calculate numerically the fluxes of energy and angular momentum radiated to infinity and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000